A Hybrid Algorithm Based on Fish School Search and Particle Swarm Optimization for Dynamic Problems
نویسندگان
چکیده
Swarm Intelligence algorithms have been extensively applied to solve optimization problems. However, some of them, such as Particle Swarm Optimization, may not present the ability to generate diversity after environmental changes. In this paper we propose a hybrid algorithm to overcome this problem by applying a very interesting feature of the Fish School Search algorithm to the Particle Swarm Optimization algorithm, the collective volitive operator. We demonstrated that our proposal presents a better performance when compared to the FSS algorithm and some PSO variations in dynamic environments.
منابع مشابه
MOUTH BROODING FISH ALGORITHM FOR COST OPTIMIZATION OF REINFORCED CONCRETE ONE-WAY RIBBED SLABS
In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by org...
متن کاملPARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...
متن کاملAN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کامل